More and more patients are asking for genetic testing of their tumors, and it’s time for YOU to be informed!

224,390 new cases of lung cancer were reported last year. 15% are estimated to be diagnosed on the basis of the new asymptomatic population of people over 75.

LUNG CANCER AFFECTS ANYONE

In the past decade, the number of clinical trials examining the role of molecular testing has grown significantly. As of February 2016, there are more than 500 clinical trials examining the role of molecular testing.

Recent advances in the field of molecular testing are allowing doctors to develop personalized treatment plans for patients. Three professional organizations, CAP, IASLC, and AMP, have released guidelines on molecular testing in lung cancer.

In order to consider and molecular testing may not be appropriate for everyone, knowing the molecular driver of the cancer can help guide treatment decisions.

Today, our understanding of lung cancer has evolved considerably. Doctors are able to target specific genetic mutations in tumors to improve outcomes.

Disparities exist in the number of molecular tests ordered among patients. For example, women are less likely to receive testing than men. Furthermore, minorities are less likely to receive testing than whites. These disparities in molecular testing are driven by several factors, including access to health care and socioeconomic status.

Several studies have demonstrated the importance of molecular testing. For example, the LUNG CANCER PROFILES project has shown that more than 50% of patients have identifiable molecular drivers.

Molecular testing is available via doctors’ offices and cancer centers of all sizes. In fact, according to the LUNG CANCER PROFILES project, in 2011, 29% of patients had undergone testing.

MOLECULAR TESTING - THE FUTURE OF PERSONALIZED CARE

Approximately half of adenocarcinomas have identifiable molecular drivers. These drivers are often identified through molecular testing. In the case of adenocarcinomas, these drivers are frequently associated with specific genetic mutations.

For patients who have been diagnosed with lung cancer, it’s important to understand that there are two major types of lung cancer, the most common being non-small cell lung cancer (NSCLC), accounting for 85% of all cases. The other type is small cell lung cancer, which accounts for 15% of all cases.

In NSCLC, the most common genetic mutations are EGFR, KRAS, ALK, and ROS1. In small cell lung cancer, the most common genetic mutations are TP53, RB1, and NF1.

It’s estimated that of new lung cancer cases, 10% are never smokers and 48% are former smokers.

WHAT DOES THIS MEAN FOR YOU?

Here are some questions to consider:

1. When is the best time to test my tumor for genetic mutations?
2. Should I consider molecular testing in my tumor?
3. Are there any limits to the amount of testing that can be done on my tumor?
4. Will I have the opportunity to discuss my test results with my doctor?

It’s important to note that there are different types of lung cancer, which can be driven by specific molecular drivers. In fact, three classes of lung cancer have been identified based on their molecular makeup: EGFR mutation, ALK rearrangement, and KRAS mutation.

In conclusion, molecular testing is crucial for understanding the molecular drivers of lung cancer. It’s important for patients to understand that there are different types of lung cancer, which can be driven by specific molecular drivers. In fact, three classes of lung cancer have been identified based on their molecular makeup: EGFR mutation, ALK rearrangement, and KRAS mutation.

To learn more about molecular testing to ask when diagnosed with lung cancer today. If you have not been tested, talk to your doctor about molecular testing to ask when diagnosed with lung cancer.

MORAL OF THE STORY

Visit www.LungCancerProfiles.com to consider and molecular testing may not be appropriate for everyone, knowing the molecular driver of the cancer can help guide treatment decisions.