The immune system can impact gene therapy in several ways through both humoral and cellular immune responses.22–25
In a humoral immune response, the body generates antibodies to an antigen. In the case of gene therapy for hemophilia, this antigen could be components of the AAV-based vector or the transgene. If these antibodies are ‘neutralizing’, they may prevent the vectors from delivering the gene to the target cells.22,23 In a cellular immune response, the transduced cell presents antigens, capsid particles, to circulating T cells, which then eliminate the transduced cell and, as a consequence, reduce the number of cells containing the transgene.24,25 This can result in loss of, or reduced, gene expression, and in turn impacts the level of protein produced.24,25
Pre-existing immunity to naturally occurring AAV can cause both humoral and cellular immune responses, and this may be a barrier to the success of AAV gene transfer.26
However, the liver has numerous unique immunological properties.27 While the liver generally exhibits a strong innate immune response,27,28 this response has been shown to be low towards AAV-based vectors.29 It also demonstrates a poor adaptive immune response, resulting in a state of relative immune unresponsiveness and immune tolerance.29,30 This is demonstrated by the lack of immune response to the large number of antigens present in the blood that flow to the liver directly from the gut.29
This liver tolerance effect, known as being tolerogenic, can be exploited therapeutically by liver-directed gene therapy to induce immune tolerance to the transgene product; i.e. blood coagulation factor.31 Preclinical data from small and large animal models of hemophilia A with inhibitors suggest that liver-directed gene therapy may overcome pre-existing anti-FVIII antibodies, induce immune tolerance and provide sustained therapeutic FVIII expression to prevent bleeding.31
You can explore these topics in more detail, including the specific mechanisms that underly the immune tolerance effect in the liver by clicking here to access the section on Gene Therapy and the Immune System.