Building Momentum: Pfizer’s Oncology Franchise at ASCO

June 4, 2007
Cautionary Language

The discussions at this meeting will include forward-looking statements. Actual results could differ materially from those projected in the forward-looking statements.

The factors that could cause actual results to differ are discussed in our 2006 Annual Report on Form 10-K and in our reports on Form 10-Q and Form 8-K. These reports are available on our website at www.pfizer.com in the “For Investors—SEC Filings by Pfizer” section.
Pfizer’s Emerging Leadership in Oncology

Pat Andrews
Vice President/General Manager, U.S. Oncology
Oncology Is a Key Focus for Pfizer

- Solid product platform: Camptosar, Aromasin, Sutent
- Exciting future: 22% of all Pfizer development funds invested in oncology

Very successful Sutent launch in advanced renal cell carcinoma (RCC) and imatinib-resistant or -intolerant gastrointestinal stromal tumors (GIST); lifecycle program advancing
 - Four Phase 3 trials in breast cancer initiated
 - Broad Phase 3 program in additional tumors about to begin

- Three other products in Phase 3, including two novel immunotherapeutics
- 26 Phase 3 oncology clinical trials, 212 oncology studies in all phases underway
Current Oncology Portfolio and Camptosar

- 2006 global sales of $2.2 billion, up 10%
- 2006 global sales of $903 million
- Multiple ASCO presentations confirm Camptosar’s role in each phase of treatment continuum for metastatic colorectal cancer (mCRC) as foundation agent in combination with bevacizumab and cetuximab
 - In BICC-C, 87% of first-line FOLFIRI + bevacizumab patients were still living after one year
 - Overall survival not reached at median 29-month followup
- European labeling has been updated to include Camptosar in combination with bevacizumab and cetuximab
Continued Growth of Aromasin

- 2006 global sales of Aromasin of $320 million, up 30%
- Aromasin is only aromatase inhibitor with an indication in the tamoxifen-switch setting
- Adjuvant indication approved in more than 60 countries
- Key efficacy and safety data for postmenopausal women with early breast cancer
 - 24% lower risk of disease relapse or death
 - 17% lower risk of dying in patients who were ER+/ER unknown
Sutent’s Successful Launch

- 2006 global sales of $219 million
 - U.S. market leadership
- U.S. and ex-U.S. approvals for first-line advanced RCC, including mRCC
- U.S. and ex-U.S. approvals for GIST after disease progression on, or intolerance to, imatinib mesylate
- Launched in more than 40 countries

First-Line Total RCC Patients (March 2007: N=135)

- SUTENT 55%
- Nexavar 36%
- Cytokines 5%
- Gemzar 1%
- Other 1%
- Avastin 1%
ASCO 2007 Highlights

- Multiple presentations on the efficacy and safety of Sutent in advanced RCC and refractory GIST
- Sutent’s efficacy and safety in numerous other tumor types
- Efficacy and safety of axitinib in Phase 2 trials in multiple tumor types
- Presentations evaluating CP-675,206 for metastatic melanoma
- Favorable interim Phase 2 data for CP-751,871 in combination with standard of care in non-small-cell lung cancer (NSCLC)
ASCO 2007 Highlights

First disclosure of clinical data for new compounds

• PF-562,271 (Focal adhesion kinase, or FAK, inhibitor)
• PF-299,804 (Pan-HER tyrosine kinase inhibitor)
• PF-477,738 (Chk 1 inhibitor)
• PD-332,991 (CDK 4/6 inhibitor)
Organizational View

- **Country organization for commercialization**

- **U.S. Oncology Business Unit**
 - Marketing
 - Sales
 - Medical

- **Dedicated structure committed to oncology**
 - Therapeutic organization for research through pre-launch
 - Therapeutic Area oversight of strategy
 - Research: Steve Bender
 - Development: Chuck Baum
 - Commercial: Alison Ayers
Breadth and Depth of Pfizer’s Pipeline in Oncology

Charles M. Baum, M.D., Ph.D.
Vice President, Oncology Development
Oncology Pipeline

Product Advancement:
- CHK1, AUR2 to Phase 1
- Axitinib to Phase 3

<table>
<thead>
<tr>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 3</th>
<th>Approved</th>
</tr>
</thead>
<tbody>
<tr>
<td>sVEGFR (PF-337,210)</td>
<td>mRTK (SU-14,813)</td>
<td>Sutent (SU-14,813)</td>
<td>Sutent (SU-14,813)</td>
</tr>
<tr>
<td>PDGFR (CP-868,596)</td>
<td>MEK (PD-325,901)</td>
<td>Axitinib (AG-13,736)</td>
<td>Aromasin (AG-13,736)</td>
</tr>
<tr>
<td>Pan-HER (PF-299,804)</td>
<td>IGF1R mAb (CP-751,871)</td>
<td>TLR9 (PF-3,512,676)</td>
<td>Camptosar (PF-3,512,676)</td>
</tr>
<tr>
<td>FAK (PF-562,271)</td>
<td>CDK 4/6 (PD-332,991)</td>
<td>PARP (AG-14,699)</td>
<td>Ellence (PF-3,512,676)</td>
</tr>
<tr>
<td>C-Met (PF-2,341,066)</td>
<td>CD40 mAb (CP-870,893)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDK 4/6 (PD-332,991)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHK1 (PF-477,736)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUR2 (PF-3,814,735)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valid as of June 4, 2007
ASCO 2007: 52 Abstracts on New Products

<table>
<thead>
<tr>
<th>Anti-Angiogenesis Portfolio</th>
<th>2006</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sutent (mRTK Inhibitor)</td>
<td>17</td>
<td>33</td>
</tr>
<tr>
<td>Axitinib (VEGFR Inhibitor)</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>CP-868,596 (PDGFR Inhibitor)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>SU-14,813 (mRTK Inhibitor)</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Immunotherapy</th>
<th>2006</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP-675,206 (CTLA4 Inhibitor)</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>PF-3,512,676 (TLR9 Agonist)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CP-870,893 (CD40 Inhibitor)</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Signal Transduction Inhibitors</th>
<th>2006</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>PF-751,871 (IGF1R Inhibitor)</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>PF-562,271 (FAK Inhibitor)*</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PF-299,804 (Pan-HER Inhibitor)*</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cytotoxic Potentiators</th>
<th>2006</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>PF-477,736 (Chk 1 Inhibitor)*</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PD-332,991 (CDK 4/6 Inhibitor)*</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TOTAL</th>
<th>2006</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>26</td>
<td>52</td>
</tr>
</tbody>
</table>

*First data disclosures

Valid as of June 4, 2007
ANTI-ANGIOGENESIS
Blocks growth of tumor blood vessels

IMMUNOTHERAPY
Re-awakens immune system

SIGNAL TRANSDUCTION INHIBITORS
Block cancer growth signals

CYTOTOXICS/POTENTIATORS
Exploit defects in repair and cycle cells
Pfizer’s Angiogenesis Portfolio

Pfizer Angiogenesis Portfolio Presented at ASCO 2007

- Sutent (sunitinib malate): multi-kinase inhibitor of VEGF, PDGF, c-Kit, FLT-3
- Axitinib: Inhibitor of VEGFR 1, 2, and 3
- SU-14,813: mRTK inhibitor
- CP-868,596: PDGFR inhibitor
Sutent: Oral Multi-Kinase Inhibitor

- Anti-angiogenic activity targeting vasculature
- Anti-proliferative activity targeting tumor cells
- Approval supported by efficacy and safety data in both first- and second-line advanced RCC treatment settings
- A leading treatment for advanced RCC in the U.S.
- Approved for treatment of GIST after disease progression on, or intolerance to, imatinib mesylate
- Data presented at ASCO 2007
 - Single-agent in RCC, HCC, gastric, prostate, bladder, lung, and refractory GIST
 - Combination regimens

Valid as of June 4, 2007
Sutent vs. Interferon-alfa (IFN-α) as First-Line Treatment of Metastatic Renal Cell Carcinoma (Abstract 5024)

N=750

Stratification Factors
- LDH ≤1.5 vs. >1.5xULN
- ECOG PS 0 vs 1
- Presence vs. Absence of Nephrectomy

Randomization

Sunitinib (N=375)

IFN-α (N=375)
Sutent: Progression-Free Survival in First-Line Advanced RCC

Sunitinib
- Median: 11.0 months
- (95% CI: 10.7-13.4)

IFN-α
- Median: 5.1 months
- (95% CI: 3.9-5.6)

Hazard Ratio = 0.538
- 95% CI (0.439, 0.658)
- p < 0.000001

Objective Response Rate of 39% for Sutent vs. 8% for IFN-α
Additional Sutent Data in Advanced Refractory mRCC

- **Phase 2 update of 168 cytokine-refractory patients (Abstract 5095)**
 - Objective response rate (ORR) 45%
 - Median progression-free survival (PFS) 8.4 months
 - Median OS 19.9 months

- **Phase 2 trial of sunitinib in bevacizumab-refractory metastatic renal cell carcinoma (Abstract 5035)**
 - 61 patients enrolled
 - ORR 23%
 - Stable disease (SD) 57%
 - Median duration of response 36 weeks
 - Plasma VEGF and sVEGFR-3 levels may predict response
Sutent Phase 2 Trial in Hepatocellular Carcinoma (HCC)

Assessment of safety and drug-induced tumor necrosis with sunitinib in patients with unresectable HCC (Abstract 3546)

- Open-label, single-arm
- Primary endpoint: confirmed ORR
- 37 patients enrolled
 - Prior local treatment, 40.5%
Sutent Clinical Activity in HCC (Abstract 3546)

- One patient (2.7%) achieved confirmed partial response (PR)
- Tumor density was found to have decreased from baseline in 68% of patients, with 46% of patients developing major (≥50%) tumor necrosis
- No evidence of tumor progression in 18 patients (48.6%) while on the study treatment
- Median time to progression (TTP) was 21 weeks
- Estimated median OS of 45 weeks (95% CI: 22.0 – not yet reached)
Sutent Study in HCC (Abstract 3546)

Adverse events were generally manageable and not unexpected

- Dose reductions in 27% of patients; 13.5% withdrawn
- Most common grade 3/4 toxicities:
 - Thrombocytopenia (43%), neutropenia (24%), hemorrhage (14%), not uncommonly encountered by other Sutent-treated cancer patients

Four Grade 5 events on study treatment, which included ascites, edema, bleeding, drowsiness, and hepatic encephalopathy
Sutent Data in Additional Tumors

<table>
<thead>
<tr>
<th>Tumor</th>
<th>Abstract Number</th>
<th>Key Findings/Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Gastric Cancer, Second-Line</td>
<td>4603</td>
<td>□ PR, SD suggest single-agent activity/Phase 2</td>
</tr>
<tr>
<td>Metastatic, Hormone-Resistant Prostate Cancer</td>
<td>5134</td>
<td>□ Single-agent sunitinib achieved PSA decline in subset of patients/Phase 1</td>
</tr>
</tbody>
</table>
Sutent Data in Additional Tumors

<table>
<thead>
<tr>
<th>Tumor</th>
<th>Abstract Number</th>
<th>Key Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metastatic NSCLC, Second- or Third-Line</td>
<td>7542</td>
<td>- Continuous daily dose with single-agent Sutent showed preliminary evidence of activity/Phase 2</td>
</tr>
<tr>
<td>Bladder Cancer</td>
<td>5080</td>
<td>- 1 PR, 8 SD of 21 evaluable patients; 4/2 schedule generally well-tolerated/Phase 2</td>
</tr>
</tbody>
</table>
Sutent: Future Plans

■ Phase 3 studies ongoing
 • Metastatic breast cancer
 • Adjuvant RCC

■ Phase 3 studies planned for 2007
 • First- and second-line studies in metastatic NSCLC
 • First-line metastatic CRC
 • Hepatocellular cancer

■ Evaluation of additional development options
 • Gastric cancer, prostate cancer, bladder cancer
Axitinib

- Oral potent and specific inhibitor of VEGFR 1, 2, and 3
- Phase 2 for refractory thyroid cancer
- Multiple Phase 2 studies ongoing
- Clinical data presented at ASCO 2007
 - Single Agent
 - Advanced refractory thyroid cancer
 - Advanced refractory RCC
 - Advanced refractory NSCLC
 - Combination
 - Pancreatic cancer in combination with gemcitabine
 - Breast cancer in combination with docetaxel
Phase 2 Study of Axitinib in Patients with Advanced 131I Refractory Thyroid Cancer (Abstract 6008)

60 Patients Enrolled
Best Response by RECIST (Per Investigator)

<table>
<thead>
<tr>
<th>Response Type</th>
<th>No.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partial Response</td>
<td>18</td>
<td>30%</td>
</tr>
<tr>
<td>Stable Disease*</td>
<td>25</td>
<td>42%</td>
</tr>
<tr>
<td>Any Tumor Shrinkage</td>
<td>23</td>
<td>38%</td>
</tr>
<tr>
<td>No Response</td>
<td>17</td>
<td>28%</td>
</tr>
<tr>
<td>Progression</td>
<td>7</td>
<td>12%</td>
</tr>
<tr>
<td>Indeterminate/Unknown</td>
<td>10</td>
<td>17%</td>
</tr>
</tbody>
</table>

*SD defined as ≥16 weeks
Phase 2 Study of Axitinib in Patients with Advanced 131I Refractory Thyroid Cancer (Abstract 6008)

Maximum % Reduction in Target Lesions* (N=51)

RECIST-defined PR (per investigator)
*Excludes 9 patients without a post-baseline scan and 1 ineligible patient
6 PR have been confirmed by independent review

Valid as of June 4, 2007
Axitinib in Advanced Pancreatic Cancer: Randomized Phase 2 Study (Abstract 4551)

Interim Results – Overall Survival

Hazard Ratio = 0.740 (0.427 - 1.284)

Axitinib + Gemcitabine
N=69, Median=210 days (162 – not reached)

Gemcitabine
N=34, Median=169 days (125 - 267)
Axitinib in Advanced Pancreatic Cancer: Randomized Phase 2 Study (Abstract 4551)

Interim Results – Overall Survival ECOG PS 0-1 only

- **Axitinib + Gemcitabine**
 - N=63, Median = not reached (95% CI: 170-nr)

- **Gemcitabine**
 - N=31, Median = 173 days (95% CI: 125-267)

Hazard Ratio = 0.667 (95% CI: 0.372-1.196)
All-Cause Adverse Events (Abstract 4551)

Gemcitabine
(N=31)

<table>
<thead>
<tr>
<th></th>
<th>All Grades</th>
<th>Grade 3/4</th>
<th>All Grades</th>
<th>Grade 3/4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diarrhea</td>
<td>26%</td>
<td>0%</td>
<td>43%</td>
<td>6%</td>
</tr>
<tr>
<td>Fatigue</td>
<td>32%</td>
<td>3%</td>
<td>40%</td>
<td>19%</td>
</tr>
<tr>
<td>Nausea</td>
<td>45%</td>
<td>10%</td>
<td>40%</td>
<td>5%</td>
</tr>
<tr>
<td>Vomiting</td>
<td>39%</td>
<td>10%</td>
<td>39%</td>
<td>6%</td>
</tr>
<tr>
<td>Anorexia</td>
<td>19%</td>
<td>0%</td>
<td>34%</td>
<td>3%</td>
</tr>
<tr>
<td>Asthenia</td>
<td>13%</td>
<td>3%</td>
<td>30%</td>
<td>9%</td>
</tr>
<tr>
<td>Dyspnea</td>
<td>16%</td>
<td>6%</td>
<td>24%</td>
<td>10%</td>
</tr>
<tr>
<td>Constipation</td>
<td>26%</td>
<td>3%</td>
<td>22%</td>
<td>5%</td>
</tr>
<tr>
<td>Hypertension</td>
<td>3%</td>
<td>0%</td>
<td>19%</td>
<td>6%</td>
</tr>
<tr>
<td>Weight Decrease</td>
<td>13%</td>
<td>0%</td>
<td>19%</td>
<td>3%</td>
</tr>
<tr>
<td>Abdominal Pain</td>
<td>29%</td>
<td>16%</td>
<td>18%</td>
<td>6%</td>
</tr>
</tbody>
</table>
Axitinib Results in Additional Tumors

<table>
<thead>
<tr>
<th>Tumor</th>
<th>Abstract Number</th>
<th>Key Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced NSCLC</td>
<td>7507</td>
<td>- 32 patients enrolled
- Responses were reported in three (9.4%) patients
- Median OS 14.6 months
- Median PFS 3.8 months (≥ second-line) and 9.2 months (first-line)
- Axitinib demonstrated single-agent activity and has manageable toxicity in this population</td>
</tr>
</tbody>
</table>
Axitinib Results in Additional Tumors

<table>
<thead>
<tr>
<th>Tumor</th>
<th>Abstract Number</th>
<th>Key Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metastatic Breast Cancer</td>
<td>1003</td>
<td>■ 168 patients randomized to axitinib + docetaxel or docetaxel alone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>■ Median TTP 8.2 months vs. 7 months</td>
</tr>
<tr>
<td></td>
<td></td>
<td>■ ORR 40% vs. 23%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>■ The combination was well tolerated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>■ Study did not reach endpoint for PFS</td>
</tr>
</tbody>
</table>

Valid as of June 4, 2007
Axitinib Results in Additional Tumors

<table>
<thead>
<tr>
<th>Tumor</th>
<th>Abstract Number</th>
<th>Key Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metastatic Renal Cell Carcinoma</td>
<td>5032</td>
<td>■ 62 patients enrolled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>■ PR 21% and SD 34%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>■ Median PFS 7.4 months</td>
</tr>
<tr>
<td></td>
<td></td>
<td>■ Axitinib has anti-tumor activity in patients with sorafenib-refractory mRCC and manageable toxicity</td>
</tr>
</tbody>
</table>

Valid as of June 4, 2007
Axitinib: Future Plans

- Continued development of axitinib for refractory thyroid cancer
- Initiation of Phase 3 program in advanced pancreatic cancer in 2007
 - Axitinib + gemcitabine vs. gemcitabine + placebo
- Evaluation of additional development options underway
Cytotoxics/Potentiators

Exploit defects in repair and cycle cells

Signal Transduction Inhibitors

Block cancer growth signals

Antiangiogenesis

Blocks growth of tumor blood vessels

Immunotherapy

Re-awakens immune system

Antiangiogenesis

Blocks growth of tumor blood vessels
Overview: The Antitumor Immune Response

Step 1: Antigen Processing
- Antigen Presentation
 - TLR9 agonist
 - CD40 mAb
 - CTLA4 mAb

Step 2: Antigen Presentation
- DC
- TLR9 agonist
- CD40 mAb

Step 3: Lymphocyte Activation
- CTLA4 mAb
- T-Cell Receptor
- Antigen-MHC
- Dendritic Cell

Step 4: Lymphocytes Kill Tumor Cells
- CTL
- Tumor Cells

Valid as of June 4, 2007
CP-675,206: CTLA4 Inhibitor

- **Fully human monoclonal antibody**
 - Administered by intravenous injection every three months
 - Blocks CTLA4 receptor to release “brake,” allow proliferation of T-cells

- **Phase 2 and 3 registration studies ongoing in metastatic melanoma**
 - Additional Phase 2 studies in colorectal, breast, NSCLC
 - Combinations under investigation

- **Data presented at ASCO 2007**
 - Melanoma
 - CRC
CP-675,206: Ongoing Pivotal Studies

Phase 2 Refractory Disease (Study Chair, Dr. Kirkwood)
co-Principal Investigators Paul Lorigan (UK), Peter Hersey (Australia)
Primary endpoint: ORR
Secondary endpoints:
- On-study response rate
- Durable response rate
- Duration of response
- PFS & OS
- Safety

Enrollment Complete
Single Arm
N=253
CP-675,206
15mg/kg every 90 days
(up to 1 year)

Phase 3 First-Line Advanced Melanoma (Study Chair, Dr. Ribas)
co-Principal Investigators Axel Hauschild (Germany), Rick Kefford (Australia)
Primary end point: OS
Secondary endpoints:
- Durable response rate
- PFS
- Objective response
- Duration of response
- Safety

Enrollment Nearing Completion
Randomize
N=630
CP-675,206
15mg/kg every 90 days
(up to 1 year)
Dacarbazine
or
Temozolomide
Results of a Phase 2 Clinical Trial of Two Doses and Schedules of CP-675,206, an Anti-CTLA4 Monoclonal Antibody, in Patients with Advanced Melanoma (Abstract 3000)

Key findings

- Dose delays, discontinuations, and grade 3/4 adverse events more frequent with 10mg/kg Q1M
- Complete and partial responses seen with both regimens (7-10%)
- Responses have been durable to date (>1.5 years)

Update on Phase 2 tomorrow
A Phase 2 Study of Anti-CTLA4 Monoclonal Antibody CP-675,206 in Patients with Refractory Metastatic Adenocarcinoma of the Colon or Rectum (Abstract 3035)

Key findings

- In heavily pretreated patients with CRC and good performance status, CP-675,206 was tolerable
- An objective response was seen in one patient
- Based on its mechanism of action and the fact that it is well tolerated, incorporation of CP-675,206 into combination regimens in CRC may be explored
PF-3,512,676: Toll-like Receptor 9 Agonist

- Stimulates dendritic cells to maturation and activates T-cell response
- Phase 3 enrollment completed in two pivotal studies in first-line metastatic NSCLC
- Phase 2 studies ongoing
 - NSCLC (additional combinations, second-line therapy)
 - Breast cancer
IMMUNOTHERAPY
Re-awakens immune system

CYTOTOXICS/POTENTIATORS
Exploit defects in repair and cycle cells

ANTI-ANGIOGENESIS
Blocks growth of tumor blood vessels

SIGNAL TRANSDUCTION INHIBITORS
Block cancer growth signals

INHIBITORS
Block cancer growth signals

INHIBITORS
Block cancer growth signals

INHIBITORS
Block cancer growth signals
CP-751,871: IGF1R Antagonist

- Fully human monoclonal antibody
- High specificity to, and down-regulates, insulin-like growth factor 1 receptor (IGF1-R)
- Additional Phase 2 studies ongoing
 - Prostate cancer, breast cancer
- Data presented at ASCO 2007
 - Phase 2 data in NSCLC
Efficacy of the IGF1 Receptor Antibody CP-751,871 in Combination with Paclitaxel and Carboplatin as First-Line Treatment for Advanced NSCLC – Interim Analysis (Abstract 7506)

<table>
<thead>
<tr>
<th>Patients</th>
<th>IGF1R + Carboplatin/Paclitaxel (44% Adenocarcinoma)</th>
<th>Carboplatin/Paclitaxel (40% Adenocarcinoma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All (N=73)</td>
<td>22/48 (46%)</td>
<td>8/25 (32%)</td>
</tr>
<tr>
<td>Adenocarcinoma (N=31)</td>
<td>8/21 (38%)</td>
<td>3/10 (30%)</td>
</tr>
<tr>
<td>Non-Adenocarcinoma (N=42)</td>
<td>14/27 (52%)</td>
<td>5/15 (33%)</td>
</tr>
</tbody>
</table>

Objective Response Rate by Histology
CP-751,871: Ongoing and Future Development

Completion of ongoing Phase 2 studies

- Prostate cancer in combination with docetaxel and prednisone
- Breast cancer in combination with Aromasin
- NSCLC in combination with docetaxel and carboplatin

Initiation of Phase 3 program in NSCLC
Early-Stage Programs

- **PF-299,804 (Abstract 3599)**
 - Orally available irreversible panHER tyrosine kinase inhibitor in Phase 1
 - Activity in several nonclinical models, including trastuzumab- and gefitinib-resistant tumors
 - Planning Phase 2 trials in refractory NSCLC and other solid tumors

- **PF-562,271 (Abstract 3527)**
 - Focal adhesion kinase (FAK) inhibitor
 - FAK is a signal transducer for integrins; coordinates with growth factor receptors
 - Expression is correlated with tumor invasion, migration, proliferation, and survival
 - Oral compound in Phase 1
 - Planning for Phase 2 trials in various solid tumors
CYTOTOXICS/POTENTIATORS
Exploit defects in repair and cycle cells

SIGNAL TRANSDUCTION INHIBITORS
Block cancer growth signals

ANTI-ANGIOGENESIS
Blocks growth of tumor blood vessels

IMMUNOTHERAPY
Re-awakens immune system
PD-332,991: CDK 4/6 Inhibitor

- Orally administered small molecule in Phase 1
- Blocks cell division
- Stable disease (≥ 10 cycles) observed in six patients
- Generally mild to moderate adverse events
ASCO 2007: 52 Abstracts on New Products

Anti-Angiogenesis Portfolio

<table>
<thead>
<tr>
<th>Compound</th>
<th>2006</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sutent (mRTK)</td>
<td>17</td>
<td>33</td>
</tr>
<tr>
<td>Axitinib (VEGFR Inhibitor)</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>CP-868,596 (PDGFR)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>SU-14813 (mRTK)</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Immunotherapy

<table>
<thead>
<tr>
<th>Compound</th>
<th>2006</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP-675,206 (CTLA4 Inhibitor)</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>PF-3,512,676 (TLR9 Agonist)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CP-870,893 (CD40 Inhibitor)</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Signal Transduction Inhibitors

<table>
<thead>
<tr>
<th>Compound</th>
<th>2006</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP-751,871 (IGF1R Inhibitor)</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>PF-562,271 (FAK Inhibitor)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>PF-299,804 (Pan-HER Inhibitor)</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Cytotoxic Potentiators

<table>
<thead>
<tr>
<th>Compound</th>
<th>2006</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>PF-477,736 (Chk 1 Inhibitor)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>PD-332,991 (CDK 4/6 Inhibitor)</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

TOTAL

<table>
<thead>
<tr>
<th></th>
<th>2006</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>26</td>
<td>52</td>
</tr>
</tbody>
</table>
Commercial Opportunity of Pfizer’s Emerging Oncology Pipeline

Alison Ayers
Leader, Commercial Head Oncology Commercial Development
Oncology Pipeline

- sVEGFR (PF-337,210)
- PDGFR (CP-868,596)
- Pan-HER (PF-299,804)
- FAK (PF-562,271)
- C-Met (PF-2,341,066)
- CD40 mAb (CP-870,893)
- CDK 4/6 (PD-332,991)
- CHK1 (PF-477,736)
- AUR2 (PF-3,814,735)
- mTKI SU-14,813
- MEK (PD-325,901)
- IGF1R mAb (CP-751,871)
- PARP (AG-14,699)
- TLR9 (PF-3,512,676)
- Pan-HER (PF-299,804)
- FAK (PF-562,271)
- C-Met (PF-2,341,066)
- CD40 mAb (CP-870,893)
- CDK 4/6 (PD-332,991)
- CHK1 (PF-477,736)
- AUR2 (PF-3,814,735)
- mTKI SU-14,813
- MEK (PD-325,901)
- IGF1R mAb (CP-751,871)
- PARP (AG-14,699)
- TLR9 (PF-3,512,676)

Compounds progressing in development based on data presented at ASCO 2007

- Anti-Angiogenesis
- Signal Transduction
- Immunotherapy
- Cytotoxic/Potentiators

Phases:
- Pre-clinical
- Phase 1
- Phase 2
- Phase 3
- Approved

Valid as of June 4, 2007
Sutent Is Becoming Recognized as a Standard of Care for RCC

“Sutent is a reference standard for first-line treatment of mRCC with significant improvement in PFS and ORR compared to IFN-α. The benefit of sunitinib extends across all subgroups of patients with mRCC.”

Abstract 5024, ASCO 2007
D. Michaelson, et al.
Presented by R. Motzer
ASCO Data Underscore Current and Future Potential for Sutent in mRCC

<table>
<thead>
<tr>
<th>Data Presented</th>
<th>Abstract Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prolonged progression-free survival in first-line as an oral single agent vs. interferon alfa in all sub-groups</td>
<td>5024</td>
</tr>
<tr>
<td>Prolonged survival in second-line (cytokine-refractory): Median OS 19.9 months</td>
<td>5095</td>
</tr>
<tr>
<td>Tolerability and efficacy confirmed in more than 2,000-patient treatment use program</td>
<td>5010</td>
</tr>
<tr>
<td>Combination data with other agents, e.g., interferon-alfa, VEGF and EGFR inhibitors</td>
<td>5101, 5097, 5099</td>
</tr>
<tr>
<td>Cost effective vs. interferon alfa</td>
<td>6607</td>
</tr>
</tbody>
</table>
Continued Development of Sutent in RCC

- Phase 3 trials initiated*
- Regulatory approval for advanced and/or metastatic RCC
- Only oral single agents with improved PFS vs. Interferon-alfa in all patient groups
- Being used as a standard for new combination development
 - Sutent + bevacizumab*
 - Sutent + RAD 001*
 - Sutent + CP-675,206*

*Includes studies sponsored by Pfizer, other companies, cooperative groups, and independent researchers

Valid as of June 4, 2007
Sutent Uptake for Advanced RCC Supported by Expanding Regulatory Approvals

U.S.
- January 2006: Approved for treatment of advanced RCC
- February 2007: New label issued including Phase 3 results showing prolonged PFS vs. IFN-alfa in first-line setting

EU
- January 2007: Approval extended to include first-line RCC

Canada
- First-line application under review

Japan
- Regulatory submission under review
Relevance of Emerging Sutent Data

<table>
<thead>
<tr>
<th>Feature</th>
<th>Potential Application</th>
<th>Reference Source/ ASCO 2007 Abstracts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-agent activity</td>
<td>Single-agent use</td>
<td>Approved in RCC and second-line GIST</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3546, 5134, 4603, 3543, 4637, 5080</td>
</tr>
<tr>
<td>Oral</td>
<td>Potential for oral-only combinations as alternative to IV chemotherapy</td>
<td>5097, 3592</td>
</tr>
<tr>
<td>Combinable with other targeted therapies</td>
<td>Potential for novel combinations e.g., Sutent + bevacizumab, gefitinib</td>
<td>5097, 5099</td>
</tr>
</tbody>
</table>
Relevance of Emerging Sutent Data

<table>
<thead>
<tr>
<th>Feature</th>
<th>Potential Application</th>
<th>Reference Source/ ASCO 2007 Abstracts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combinable with common cytotoxics</td>
<td>Supports Phase 3 development in range of tumors</td>
<td>3543, 3592, 15632</td>
</tr>
<tr>
<td>Absence of cross-resistance with bevacizumab</td>
<td>Different activity profile vs. bevacizumab; may enable sequencing strategies</td>
<td>5035</td>
</tr>
<tr>
<td>Active in additional tumors</td>
<td>Potential for future development (e.g., prostate, bladder, hepatocellular, gastric)</td>
<td>5080, 3546, 4603, 5134</td>
</tr>
</tbody>
</table>
ASCO Data Support Broad Development

Pfizer Phase 3 Program	**First-Line**	**Second-Line**
Advanced Breast Cancer | Sutent vs. bevacizumab (both + SOC) | All oral regimen – Sutent + capecitabine
Sutent + SOC vs. SOC | Sutent single agent
Sutent + bevacizumab (G) | ...
Advanced Colorectal Cancer | Sutent vs. bevacizumab (both + SOC) | All oral targeted regimen – Sutent + erlotinib
Sutent + SOC | ...
Advanced NSCLC | Sutent + SOC vs. SOC | ...
Sutent + bevacizumab (G) + SOC | ...
HCC | Sutent single agent | ...

*G = Ph 2 initiated by Genentech
SOC = Standard of Care*
Axitinib Data Presented at ASCO Suggests Promising Clinical Profile

<table>
<thead>
<tr>
<th>Data Presented</th>
<th>Abstract Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficacy in pancreatic cancer in combination with gemcitabine, with trend to survival improvement</td>
<td>4551</td>
</tr>
<tr>
<td>Oral single-agent activity demonstrated in refractory thyroid, RCC, NSCLC</td>
<td>6008, 5032, 7507</td>
</tr>
<tr>
<td>Improved response rates in breast cancer in combination with docetaxel</td>
<td>1003</td>
</tr>
<tr>
<td>Combinable with cytotoxics (e.g., docetaxel, gemcitabine)</td>
<td>4551, 1003</td>
</tr>
<tr>
<td>Not completely cross-resistant with other anti-angiogenic agents (activity in RCC post Sutent or sorafenib)</td>
<td>5032</td>
</tr>
</tbody>
</table>
Axitinib: Potential Commercial Relevance of Pancreatic-Cancer Data

Significant Unmet Need
- Pancreatic cancer: fourth-leading cause of cancer death in U.S. and EU*
- Median overall survival (mOS) of six months*
- Five-year survival rates of 3%*

Limited Competition
- 85-90% of patients receive gemcitabine**
 - Most often as a single agent
- Erlotinib approved based on a two-week improvement in mOS ***
- Other cancer treatments have failed in pancreatic-cancer trials

- Axitinib randomized Phase 2 study showed a trend toward overall survival (Abstract 4551)
 - Axitinib + gemcitabine vs. gemcitabine alone
 - Supports initiation of Phase 3 program

*Da Vinci Treatment Architectures
**Synovate MAT 01/07, Mattson Jack Cancer Impact
***Erlotinib U.S. Prescribing Information

Valid as of June 4, 2007

Pfizer Oncology
Pfizer: An Emerging Leader in Immuno-Oncology

- **Pfizer Immuno-Oncology offers a novel approach**
 - Investigating novel mechanisms to enhance the immune response and overcome tumor-induced immunosuppression
 - Potential for combinations of immunotherapeutics with complementary mechanisms
 - e.g., CP-675,206 + PF-3,512,676 Phase 1 study
 - Potential for combinations with novel agents
 - e.g., CP-675,206 + Sutent Phase 1 study

- **Acquisition of PowderMed provides platform for therapeutic vaccines and potential new treatment modalities in combination with Pfizer’s existing pipeline**
<table>
<thead>
<tr>
<th>Data Presented and Implications</th>
<th>Abstract Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-agent activity in advanced melanoma patients</td>
<td>3000</td>
</tr>
<tr>
<td>Patients treated in Phase 1/2 study showed survival time that was greater than historical controls</td>
<td>8524</td>
</tr>
<tr>
<td>Q3M dose associated with lower incidence of Grade 3 or 4 adverse events than monthly dose</td>
<td>3000, 3038</td>
</tr>
<tr>
<td>Diarrhea was mild to moderate in severity and is mostly transient and manageable</td>
<td>3038</td>
</tr>
<tr>
<td>In pretreated patients with refractory colorectal cancer and good performance status, CP-675,206 as single agent was tolerable and showed a response in one patient</td>
<td>3035</td>
</tr>
</tbody>
</table>
CP-675,206: Currently Being Investigated in Multiple Tumors and Settings

<table>
<thead>
<tr>
<th>Tumors</th>
<th>Combinations</th>
<th>Modalities</th>
<th>Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melanoma</td>
<td>Single agent</td>
<td>Immunotherapy</td>
<td>First and second line</td>
</tr>
<tr>
<td>Melanoma</td>
<td>PF-3,512,676</td>
<td>Immunotherapy</td>
<td>First line</td>
</tr>
<tr>
<td>CRC</td>
<td>Single agent</td>
<td>After chemotherapy</td>
<td>Refractory disease</td>
</tr>
<tr>
<td>Breast</td>
<td>Aromasin</td>
<td>Hormone therapy</td>
<td>First line</td>
</tr>
<tr>
<td>NSCLC</td>
<td>Current standard of care</td>
<td>After chemotherapy</td>
<td>First and second line</td>
</tr>
<tr>
<td>RCC</td>
<td>Sutent</td>
<td>Anti-angiogenesis</td>
<td>First line</td>
</tr>
<tr>
<td>Pancreas</td>
<td>Gemcitabine</td>
<td>Chemotherapy</td>
<td>First line</td>
</tr>
</tbody>
</table>

Valid as of June 4, 2007
Promising Interim Phase 2 Data Support Phase 3 Planning for CP-751,871

- First IGF1R antagonist to report Phase 2 data
- CP-751,871 data in NSCLC presented (Abstract 7506)
- Data in the squamous cell segment of NSCLC support further investigation in this population
 - Squamous cell represents ~30%-40% of NSCLC
 - Bevacizumab not indicated for squamous cell NSCLC
- IGF1R overexpression has been associated with several major tumors, which our future development program will explore
 - Liver, colorectal, breast, prostate, gastric
Pfizer Emerging Position in Biologics

<table>
<thead>
<tr>
<th>Agent</th>
<th>Class</th>
<th>Phase of Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP-675,206 (CTLA4 inhibitor)</td>
<td>Monoclonal antibody</td>
<td>3</td>
</tr>
<tr>
<td>PF-3,512,676 (TLR9 agonist)</td>
<td>Oligonucleotide</td>
<td>3</td>
</tr>
<tr>
<td>CP-751,871 (IGF1R inhibitor)</td>
<td>Monoclonal antibody</td>
<td>2</td>
</tr>
<tr>
<td>CP-870,893 (CD40 inhibitor)</td>
<td>Monoclonal antibody</td>
<td>1</td>
</tr>
</tbody>
</table>
Pfizer Phase 3 Progress in Expanded Tumors

<table>
<thead>
<tr>
<th>Tumor</th>
<th>Estimated Value of Market²</th>
<th>% Market Value in Metastatic Setting</th>
<th>Prevalent Patients, Metastatic Setting³</th>
<th>Progress</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Small-Cell Lung</td>
<td>$3.6B</td>
<td>>90%</td>
<td>600,000</td>
<td>PF-3,512,676: Phase 3 fully enrolled</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sutent NSCLC: Phase 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Axitinib and IGF1R: Phase 2 data</td>
</tr>
<tr>
<td>Breast</td>
<td>$4.8B</td>
<td>50%</td>
<td>580,000</td>
<td>Sutent: Phase 3</td>
</tr>
<tr>
<td>Colorectal</td>
<td>$4.4B</td>
<td>65%</td>
<td>390,000</td>
<td>Sutent: Phase 3</td>
</tr>
<tr>
<td>Stomach*</td>
<td>$0.9B</td>
<td>85%</td>
<td>160,000</td>
<td>Sutent: Phase 2</td>
</tr>
<tr>
<td>Liver*</td>
<td>$0.3B</td>
<td>>90%</td>
<td>90,000</td>
<td>Sutent: Phase 3</td>
</tr>
<tr>
<td>Prostate</td>
<td>$3.0B</td>
<td>55%</td>
<td>440,000</td>
<td>Sutent: Phase 2</td>
</tr>
<tr>
<td>Pancreas</td>
<td>$0.7B</td>
<td>90%</td>
<td>100,000</td>
<td>Axitinib: Phase 3</td>
</tr>
<tr>
<td>Melanoma</td>
<td>$0.3B</td>
<td>90%</td>
<td>73,000</td>
<td>CP-675,206: Phase 3</td>
</tr>
<tr>
<td>Thyroid***</td>
<td><$0.1B</td>
<td>>90%</td>
<td>N/A</td>
<td>Axitinib: Phase 3</td>
</tr>
</tbody>
</table>

1 Estimates based on U.S. sales breakdown by stage, DaVinci Associates
2 Values based on Decision Resources forecasts
3 Mattson Jack 10 year restaged prevalence metastatic disease US, Japan, UK, Germany, France, Spain, Italy

*Market values for stomach and liver cancers are from DaVinci
** correspond to incident patients in metastatic setting
*** team estimates

Valid as of June 4, 2007
Building Momentum: Pfizer’s Oncology Franchise at ASCO

June 4, 2007